Masukkan Kode Menu Di Sini

SELAMAT MEMBACA ! SELAMAT MEMBACA ! SELAMAT MEMBACA ! SELAMAT MEMBACA ! SELAMAT MEMBACA !

Senin, 27 Juni 2011

muatan listrik


Benjamin Franklin (1706-1790) menggolongkan muatan listrik menjadi positif dan negatif. Seperti halnya yang akan terjadi pada magnet, muatan listrik yang sejenis (positif-positif atau negatif-negatif) akan saling tolak menolak, sedangkan yang berbeda jenis (positif-negatif atau negatif-positif) akan saling tarik menarik.
Jika sebuah batang kaca kita gosok dengan kain sutra, maka batang kaca tersebut akan menjadi bermuatan positif. Sedangkan batang plastic yang digosok dengan kain wol akan menjadi bermuatan negatif. Mengapa hal tersebut dapat terjadi?
Model atom Rutherford menyatakan bahwa atom disusun oleh sejumlah proton bermuatan positif yang terdapat dalam inti atom yang dikelilingi oleh sejumlah elektron bermuatan negatif. (Lihat gambar).
Atom bersifat netral karena jumlah proton dalam into atom = jumlah elektron yang mengelilingi atom. Hanya elektron yang berperan pada intraksi antar atom. Elektron dapat keluar atau masuk kedalam susunan atom, terutama elektron terluar atau elektron valensi. Jika elektron keluar dari susunan atom, maka jumlah proton bermuatan positif akan lebih banyak dibandingkan dengan elektron bermuatan negatif, sehingga atom menjadi bermuatan positif. Jika elektron masuk pada susunan ato, maka jumlah elektron negatif lebih banyak daripada proton posiif, sehingga atom menjadi bermuatan negatif. 

Ketika batang plastik digosok dengan wol, maka elektron-elektron wol akan menuju ke batang plastik sehingga batang plastik kelebihan elektron dan menjadi bermuatan negatif. Ketika batang kaca digosok dengan kain sutera, maka elektron batang kaca berpindah ke kain sutera sehingga batang kaca menjadi bermuatan positif.
Suatu karakteristik penting dari muatan adalah bahwa muatan listrik itu kekal. Benda menjadi bermuatan karena muatan negatif dipindahkan dari benda tersebut ke benda lainya.

listrik statis :: hukum columb

hukum columb

Dua muatan listrik yang sejenis tolak menolak dan yang tidak sejenis tarik-menarik. Ini berarti antara dua muatan terjadi gaya listrik. Bagaimanakan pengaruh besar muatan dan jarak antara kedua muatan terhadap besar gaya listrik ini?
Hubungan gaya listrik antara dua bola bermuatan terhadap jarak antara keduanya, pertama kali diselidikai oleh Charles Coulomb pada tahun 1785. Dalam percobaannya ia menggunakan sebuah neraca puntir. Melalui percobaannya Coulomb menyimpulkan bahwa gaya tarikatau gaya tolak berbanding terbalik dengan kuadrat jarak antara kedua bola bermuatan. Atau dapat ditulis secara matematis:
F ∞1/r2
Bagaimana muatan mempengaruhi gaya listrik?
Pada awalnya Coulomb mengukur gaya tolak antara bola A dan bola B pada suatu jarak tertentu (dijaga tetap dalam percobaan). Kemudian dia membagi muatan bola A menjadi dua sehingga muatan bola A menjadi setengah muatan awalnya. Coulomb mendapatkan bahwa besar gaya tolak menjadi setengah kali semula. Percobaan diulangi dengan membagi muatan A menjadi seperempat muatan awalnya. Dia mendapatkan bahwa besar gaya tolak menjadi seperempat kali semula. Coulomb menarik kesimpulan bahwa aya tarik atau gaya tolak antara dua bola bermuatan sebanding dengan muatan-muatannya. Atau dapat ditulis secara matematis:
F∞q1 q2
Dengan menggabungkan kedua kesimpulan tersebut, Coulomb menyatakan hukumnya yang dikenal sebagai hukum Coulomb:
Besar gaya tarik atau gaya tolak antara dua muatan listrik sebanding dengan muatan-muatannya dan berbanding terbalik dengan kuadrat jarak antara kedua muatan.
Secara matematis:
F = k q1 q2 / r2
k = 1/4πε0
dengan:
k = 9 x 109 Nm2C-2 (dalam SI)
ε =permitivitas vakum atau udara = 8,85 x 1012 C2N-1m2




Charles Augustin de Coulomb (1736-1806) adalah ahli fisika Prancis. Ia lahir di Augouleme, Prancis, pada tanggal 14 Juni 1736 dan meninggal di Paris pada tanggal 23 Agustus 1806 pada umur 70 tahun.
Ia sangat masyhur karena dapat mengukur gaya listrik dan gaya magnetic dengan teliti. Untuk menghormatinya namanya diabadikan sebagai satuan muatan listrik, ialah couloumb (disingkat C). Satu couloumb = banyaknya muatan listrik yang mengalir lewat suatu penghantar selama satu detik, bila besar arus satu ampere.

Hukum Couloumb berbunyi sebagai berikut:”Gaya tarik atau gaya tolak dua benda yang bermuatan listrik berbanding terbalik dengan kuadrat jaraknya dan berbanding lurus dengan besar masing-masing muatan”. Untuk mengukur gaya listrik, Couloumb mempergunakan neraca punter atau neraca torsi yang sangat peka.

Couloumb berasal dari keluarga bangsawan. Ia bersekolah di Institute Teknologi di Mezieres, sebuah perguruan Tinggi Teknologi pertama di dunia. Disitu ia mendapat pengetahuan murni dan terapan. Sesudah menggondol gelar insinyur, Couloumb masuk Korp Insinyur Kerajaan. Pada umur 28 tahun (1764) ia dikirim ke India Barat. Ia bertugas mengawasi pembangunan benteng di Martinique. Ia bekerja disana selama 10 tahun. Kesehatannya makin lama makin buruk. Maka pada tahun 1776 ia kembali ke Paris dan menghabiskan waktunya untuk mengadakan reset ilmiah. Tahun berikutnya (1777) ia menemukan neraca punter. Napoleon Bonaparte mengangkatnya jadi inspektur jenderal pendidikan.
Hukum Coulomb adalah hukum yang menjelaskan hubungan antara gaya yang timbul antara dua titik muatan, yang terpisahkan jarak tertentu, dengan nilai muatan dan jarak pisah keduanya.

hukum termodinamika

hukum termodinamika

Hukum Termodinamika


Max Karl Ernst Ludwig Planck
Max Karl Ernst Ludwig Planck
Hukum – hukum termodinamika membicarakan tentang energi di lingkungan kita. Hukum ini menjelaskan tentang bagaimana makhluk hidup dan ekosistem berfungsi. Hukum termodinamika adalah hukum alam (Soemarwoto, 1989) dengan kata lain ketetentuan yang ada di dalamnya adalah mutlak, tidak dapat dibantah. Maka dari itu hukum alam sering disebut dengan
Sunnatullah.
Ada 2 bentuk hukum termodinamika, yaitu Hukum Konservasi Energi (Termodinamika I) dan Hukum Entropi (Termodinamika II).
Hukum termodinamika I

Fikirkan Keteraturan Alam
Fikirkan Keteraturan Alam
”Energi tidak dapat ditambah atau dikurangi, hanya dapat berubah bentuk.
Energi dalam keadaan tetap lestari (conserved)”.
Dalam hukum ini dijelaskan bahwa energi yang berasal dari energi matahari tersebut sesampai di bumi tidak pernah habis dipakai. Sebaliknya energi tersebut akan terus mengalami perubahan menjadi bentuk energi lain. Sebagai contoh untuk memperjelas gambaran,
  1. Sinar matahari yang sampai di bumi merupakan energi panas yang akan memanaskan daratan dan lautan. Daratan memiliki massa yang lebih padat daripada lautan sehingga temperature daratan lebih cepat meningkat dengan waktu pemanasan yang sama dengan lautan. Tempat yang lebih panas memiliki materi yang lebih renggang sehingga tekanan udaranya lebih rendah.“Udara bergerak dari tempat bertekanan tinggi ke tempat bertekanan rendah”. Dengan demikian terjadilah aliran udara yang disebut angin. Dan angin tersebut mengalir dari lautan ke daratan (pada siang hari), sehingga disebut angin laut.
  2. Angin yang mengalir menuju daratan tersebut merupakan energi kinetic yang dapat menggerakkan baling – baling turbin.
  3. Energi kinetic dari baling – baling ini nantinya dapat menggerakkan dynamo atau generator listrik, dan terciptalah energi listrik.
  4. Energi listrik ini dapat diubah menjadi bermacam energi yang lain seperti yang terjadi dalam kehidupan kita. E.g. energi suara, energi panas, dan energi lainnya.
  5. Pada kasus lain air laut yang digerakkan oleh angin akan menjadi gelombang. Laut dengan gelombang yang cukup tinggi dapat diubah menjadi sumber tenaga listrik yang dikenal dengan istilah OTEC (Ocean Thermal Energi Conversion).
cara kerja diesel
cara kerja diesel
Selain itu, hukum konservasi juga menjelaskan mengenai perubahan suhu lingkungan. Kita sering mendengar bahwa lingkungan semakin panas dengan semakin berkurangnya jumlah pohon. Hal tersebut dapat dijelaskan dengan gambaran demikian :
Sinar matahari (SM) merupakan sumber energi yang jatuh dibumi dan kita beri nilai awal 100%. Kemudian kita anggap tempat jatuhnya energi 100% tersebut ke 4 bagian bumi, yaitu hutan, bangunan atau rumah, tanah, dan perairan terbuka. Ada 2 sifat energi yang sampai ke bumi.
Energi terpakai untuk kegiatan dibumi, misal untuk kegiatan tumbuhan seperti transpirasi tumbuhan (TT), atau untuk penguapan air yang disebut dengan evaporasi (Ev).
Energi dipantulkan sebagai radiasi panas, missal pemantulan oleh rumah atau bangunan (RR) dan pemantulan oleh tanah (RT). Lagi – lagi kita permudah gambaran kita dengan membagi rata masing – masing bagian bumi tersebut dengan nilai yang sama, yaitu masing – masing senilai 25%. Sehingga :
SM = TT + Ev + RT + RR ….. (1)
Energi yang dipantulkan hanya berasal dari RT dan RR saja atau senilai 50% (merupakan yang kita rasakan sebagai suhu lingkungan kita) dan sisanya senilai 50%, TT dan Ev adalah energi yang digunakan.
Sekarang saatnya simulasi. Andai kata semua tumbuhan dibabat habis untuk mendirikan sebuah pemukiman, maka TT akan berubah menjadi RR’, dan persamaannya :
SM = RR’ + Ev + RT + RR ….. (2)
Dimana energi yang dipantulkan sekarang berasal dari RT, RR, dan RR’ dengan jumlah total 25% +25% +25% = 75%. Dan andaikan pula setelah semua tumbuhan telah dibabat habis belum sempat didirikan sebuah pemukiman, maka TT akan berubah menjadi RT yang artinya sama dengan persamaan (2) yang menyatakan suhu terasa lebih hangat lagi dibandingkan dengan ketika tumbuhan masih ada di lahan itu.
Simulasi berikutnya, coba anda bayangkan jika perairan kita ditempati oleh kapal – kapal, atau yang lebih mudah jika sebagian perairan menjadi pelabuhan. Maka energi yang semula digunakan untuk penguapan / evaporasi (Ev) sekarang dipantulkan oleh kapal – kapal atau oleh pelabuhan tersebut (RK) yang sama halnya dengan sebuah bangunan, dan persamaannya menjadi :
SM = RR’ + RK + RT+ RR ….. (3)
Sehingga lingkungan dengan pelabuhan dan kapal – kapalnya terasa semakin panas.
Dengan demikian terlihat bahwa konversi tumbuhan dan perairan menjadi perumahan atau lahan terbuka akan menyebabkan naiknya suhu bumi. Dan pelajaran yang kita peroleh adalah bahwa semakin berkurang hutan dan/atau genangan air akan berakibat bumi semakin panas.
Hukum termodinamika II
planck-sizedHukum ini menerangkan bahwa setiap pemakaian suatu bentuk atau unit energi tidak pernah tercapai efisiensi 100%. Dalam proses perubahan satu bentuk energi menjadi bentuk energi yang lain selalu menghasilkan sisa yang disebut dengan entropi. Sehingga hukum ini sering disebut sebagai Hukum Entropi yang dalam buku teks berbahasa Inggris disebut dengan istilah The Law of Entropy. Karena entropi menurut kita adalah sesuatu yang sudah tidak terpakai maka entropi tersebut dibuang sebagai limbah. Namun tanpa kita sadari sesungguhnya entopi tersebut masih dapat digunakan. Sebagai contoh, pada saat pembuatan papan dari balok kayu maka entropinya adalah serbuk gergaji. Pada hakekatnya limbah serbuk gergaji ini adalah energi juga yang berarti masih dapat dipakai ntuk proses lainnya, misalnya sebagai bahan bakar.
Untuk contoh lainnya adalah perubahan bentuk energi dari buah mangga.
Ketika kita memakan buah mangga, entropinya berupa kulit dan biji mangga yang lalu kita buang sebagai sampah. Namun bila kulit mangga dan biji ditemukan oleh semut dan hewan herbivore lainnya, biji dan kulit ini merupakan energi bagi mereka. Entropi saat semut memakan kulit mangga ialaah serabut – serabut yang terdiri dari bahan selulosa karena tidak dapat dicerna oleh semut itu sendiri. Serabut dari buah mangga ini merupakan sumber energi pula bagi jamur dan mikrobia tertentu. Dari serat tersebut yang biasanya digunakan oleh jasad renik adalah cairannya sehingga serabut sisa kulit itu seolah menjadi rapuh dan terurai menjadi serbuk yang tidak lain adalah entropi juga. Kahirnya serbuk inipun akan menghilang dari permukaan tenah karena telah dijadikan sumber energi pula oleh bakteri dimana peristiwa hancurnya sampa tersebut disebut dengan istilah pembusukan. Pembusukan demi pembusukan sampah organic akan menghasilkan kompos yang akan digunakan untuk menyuburkan tanah.
Tidak hanya irisan mangga namun juga untuk makanan lain yang kita makan seperti nasi pada akhirnya akan menjadi entropi yang masih dapat digunakan oleh organism lain.
Lebih ringkas dari Hukum Termodinamika II (Law of Entropy) kita dapat memetik 2 hal, antara lain:
  1. Pencemaran selalu terjadi dan tidak dapat dihindari karena adanya limbah atau entopi.
  2. Pencemaran dapat diperkecil karena sesungguhnya entropi itu adalah sisa energi dari suatu proses. Dan karena entropi masih merupakan energi, maka entropi dapat digunakan untuk proses lain (Tandjung, 1992a)
sharris-deptofentropy
Dari penjelasan di atas saya kira cukuplah untuk sekedar memperkenalkan kepada teman – teman tentang bagaimana salah satu dari sekian banyak hukum alam yang berlaku. Dan dari sedikit pengetahuan itu pulalah saya ingin menyarankan kepada teman – teman pembaca agar tidak hanya menjadikan pengetahuan itu hanya sebatas pengetahuan saja, namun alangkah baiknya bukan jika sedikit saja dari kita menyadari akan suara lingkungan yang membujuk kita untuk menyelamatkan mereka, toh demi kita juga.
Then, what?
Lebih bijaksanalah untuk memperlakukan lingkungan yang ada di sekeliling kita, karena pada akhirnya kita dan saudara – saudara kita jugalah yang akan menerima akibatnya entah itu positif atau negative.

LINIER DAN ANGULER

Momentum Linier dan Anguler


Dalam fisikamomentum adalah besaran yang berhubungan dengan kecepatan dan massa suatu benda.


MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.


\mathbf{P}= m \mathbf{v}\,\!


P= momentum (kg m/s)
m= massa (kg)
v= kecepatan (m/s)


Massa merupakan besaran skalar, sedangkan kecepatan merupakan besaran vektor. Perkalian antara besaran skalar dengan besaran vektor akan menghasilkan besaran vektor. Jadi, momentum merupakan besaran vektor dengan arah p = arah v. Momentum sebuah partikel dapat dipandang sebagai ukuran kesulitan untuk mendiamkan benda. Sebagai contoh, sebuah truk berat mempunyai momentum yang lebih besar dibandingkan mobil yang ringan yang bergerak dengan kelajuan yang sama. Gaya yang lebih besar dibutuhkan untuk menghentikan truk tersebut dibandingkan dengan mobil yang ringan dalam waktu tertentu. 



MOMENTUM ANGULER (L)
Jika momentum linear adalah momentum yang dimiliki oleh benda-benda yang bergerak pada lintasan lurus, maka momentum sudut merupakan momentum yang dimiliki oleh benda-benda yang melakukan gerak rotasi. Dikatakan sudut, karena ketika melakukan gerak rotasi, setiap benda mengitari sudut tertentu. Dalam hal ini, benda berputar terhadap poros alias sumbu rotasi.


MOMENTUM ANGULER adalah hasil kali momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.
L = m v R = m w R2
L = p R



L= momentum sudut (kg m2/s)
m= massa (kg)
v= kecepatan (m/s)
R= jari-jari (m)
w= kecepatan sudut (rad/s)
p= momentum linier (kg m/s)
Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

SISTEM KORDINAT CARTESIUS DUA DIMENSI

sistem koordinat cartesius dua dimensi


Sistem koordinat Kartesius dalam dua dimensi umumnya didefinisikan dengan dua sumbu yang saling bertegak lurus antar satu dengan yang lain, yang keduanya terletak pada satu bidang (bidang xy). Sumbu horizontal diberi label x, dan sumbu vertikal diberi label y. Pada sistem koordinat tiga dimensi, ditambahkan sumbu yang lain yang sering diberi label z. Sumbu-sumbu tersebut ortogonal antar satu dengan yang lain. (Satu sumbu dengan sumbu lain bertegak lurus.)
Titik pertemuan antara kedua sumbu, titik asal, umumnya diberi label 0. Setiap sumbu juga mempunyai besaran panjang unit, dan setiap panjang tersebut diberi tanda dan ini membentuk semacam grid. Untuk mendeskripsikan suatu titik tertentu dalam sistem koordinat dua dimensi, nilai x ditulis (absis), lalu diikuti dengan nilai y (ordinat). Dengan demikian, format yang dipakai selalu (x,y) dan urutannya tidak dibalik-balik.

GERAK MELINGKAR

Gerak Melingkar


Gerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalumembelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran.



Besaran gerak melingkar


Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah θω dan α atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan rv dan α.

Besaran gerak lurus dan melingkar
Gerak lurusGerak melingkar
BesaranSatuan (SI)BesaranSatuan (SI)
poisisi  msudut θrad
kecepatan v m/skecepatan sudut ω rad/s
percepatan α m/s2percepatan sudut α rad/s2
--perioda Rs
--radius Tm



Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

GERAK LURUS BERATURAN

Gerak lurus beraturan

Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.
s = v.t
dengan arti dan satuan dalam SI:
  • s = jarak tempuh (m)
  • v = kecepatan (m/s)
  • t = waktu (s)

Suatu benda dikatakan melakukan gerak lurus beraturan jika kecepatannya selalu konstan. Kecepatan konstan artinya besar kecepatan alias kelajuan dan arah kecepatan selalu konstan. Karena besar kecepatan alias kelajuan dan arah kecepatan selalu konstan maka bisa dikatakan bahwa benda bergerak pada lintasan lurus dengan kelajuan konstan.
Misalnya sebuah mobil bergerak lurus ke arah timur dengan kelajuan konstan 10 m/s. Ini berarti mobil bergerak lurus ke arah timur sejauh 10 meter setiap sekon. Karena kelajuannya konstan maka setelah 2 sekon, mobil bergerak lurus ke arah timur sejauh 20 meter, setelah 3 sekon mobil bergerak lurus ke arah timur sejauh 30 meter… dan seterusnya… . Arah kecepatan mobil = arah perpindahan mobil = arah gerak mobil.
Perhatikan bahwa ketika dikatakan kecepatan, maka yang dimaksudkan adalahkecepatan sesaat. Demikian juga sebaliknya, ketika dikatakan kecepatan sesaat, maka yang dimaksudkan adalah kecepatan.
Dalam gerak lurus beraturan (GLB) kecepatan benda selalu konstan. Kecepatan konstan berarti besar kecepatan (besar kecepatan = kelajuan) dan arah kecepatan selalu konstan.
Grafik Kecepatan terhadap Waktu (v-t)
                                                                               
Berdasarkan grafik di atas, tampak bahwa besar kecepatan bernilai tetap pada tiap satuan waktu. Besar kecepatan tetap ditandai oleh garis lurus, berawal dari t = 0 hingga t akhir.
Contoh : perhatikan grafik kecepatan terhadap waktu (v-t) di bawah ini

Besar kecepatan benda pada grafik di atas adalah 3 m/s. 1, 2, 3 dstnya adalah waktu tempuh (satuannya detik). Amati bahwa walaupun waktu berubah dari 1 detik sampai 5, besar kecepatan benda selalu sama (ditandai oleh garis lurus).
Bagaimana kita mengetahui besar perpindahan benda melalui grafik di atas ? luas daerah yang diarsir pada grafik di atas sama dengan besar perpindahan yang ditempuh benda. Jadi, untuk mengetahui besarnya perpindahan, hitung saja luas daerah yang diarsir. Tentu saja satuan perpindahan adalah satuan panjang, bukan satuan luas.
Dari grafik di atas, v = 5 m/s, sedangkan t = 3 s. Dengan demikian, besar perpindahan yang ditempuh benda = (5 m/s x 3 s) = 15 m. Cara lain menghitung besar perpindahan  adalah menggunakan persamaan GLB. s = v t= 5 m/s x 3 s = 15 m.
Persamaan GLB yang kita gunakan untuk menghitung besar perpindahan di atas berlaku jika gerakan benda memenuhi grafik tersebut. Pada grafik terlihat bahwa pada saat t = 0 s, maka v = 0. Artinya, pada mulanya benda diam, baru kemudian bergerak dengan kecepatan sebesar 5 m/s. Padahal dapat saja terjadi bahwa saat awal kita amati benda sudah dalam keadaan bergerak, sehingga benda telah memiliki posisi awal s0. Untuk itu lebih memahami hal ini, pelajari grafik di bawah ini.
Grafik Perpindahan terhadap Waktu (x-t)
Grafik posisi terhadap waktu, di mana posisi awal x0 berhimpit dengan titik acuan nol.
                                                                             
Makna grafik di atas adalah bahwa besar kecepatan selalu tetap. Anda jangan bingung dengan kemiringan garis yang mewakili kecepatan. Makin besar nilai x, makin besar juga nilai t sehingga hasil perbandingan x dan y selalu sama.

FLUIDA STATIS


Suatu zat yang mempunyai kemampuan mengalir dinamakan fluida. Cairan adalah salah satu jenis fluida yang mempunyai kerapatan mendekati zat padat. Letak partikelnya lebih merenggang karena gaya interaksi antar partikelnya lemah. Gas juga merupakan fluida yang interaksi antar partikelnya sangat lemah sehingga diabaikan. Dengan demikian kerapatannya akan lebih kecil.
Karena itu, fluida dapat ditinjau sebagai sistem partikel dan kita dapat menelaah sifatnya dengan menggunakan konsep mekanika partikel. Apabila fluida mengalami gaya geser maka akan siap untuk mengalir. Jika kita mengamati fluida statik, misalnya air di tempayan. Sistem ini tidak mengalami gaya geser tetapi mempunyai tekanan pada dinding tempayan.
  • Berdasarkan uraian di atas, maka pada materi ini akan dibahas dulu mengenai fluida statik. Pada kegiatan berikutnya akan dibahas secara khusus fluida dinamik. Pembahasan sering menggunakan konsep umum maupun prinsip mekanika partikel. Dengan mempelajari materi ini berarti Anda akan dapat mengkaji sifat fluida statik dan fluida dinamik dengan menggunakan mekanika partikel. Setelah Anda mempelajari materi ini, Anda dapat:
    Menjelaskan makna hukum utama hidrostatik.
    Menggunakan hukum utama hidrostatik untuk menjelaskan sifat-sifat khusus fluida statik.
    Membedakan macam-macam aliran fluida.
    Menghitung debit aliran fluida.
    Menjelaskan makna hukum Bernoulli.
    Menggunakan hukum Bernoulli untuk menjelaskan sifat-sifat aliran fluida.
    Menjelaskan masalah fluida pada kehidupan sehari-hari dengan menggunakan konsep fisika.
FLUIDA STATIKA
Pada kegiatan pertama ini dibahas mengenai fluida statik. Pada kehidupan sehari-hari, sering digunakan air sebagai contoh. Marilah kita perhatikan air tenang yang berada di tempayan.

Gambar 1. Gaya-gaya yang bekerja pada dinding tempayan
tempat fluida adalah gaya normal
Cairan yang berada dalam bejana mengalami gaya-gaya yang seimbang sehingga cairan itu tidak mengalir. Gaya dari sebelah kiri diimbangi dengan gaya dari sebelah kanan, gaya dari atas ditahan dari bawah. Cairan yang massanya M menekan dasar bejana dengan gaya sebesar Mg. Gaya ini tersebar merata pada seluruh permukaan dasar bejana sebagaimana diperhatikan oleh bagian cairan dalam kolom kecil pada gambar 2. Selama cairan itu tidak mengalir (dalam keadaan statis), pada cairan tidak ada gaya geseran sehingga hanya melakukan gaya ke bawah oleh akibat berat cairan dalam kolom tersebut:
W = m g = ρ V g (1)
di mana ρ adalah kerapatan zat cair dan V adalah volume kolom. Jika V = h ∆A, kita dapatkan:
W = ρ h ∆A g (2)
Jika berat itu ditopang oleh luasan ∆A, yang sebanding dengan luas ∆A, akibatnya gaya ini tersebar rata di permukaan dasar bejana.
Tekanan sebagai perbandingan gaya dengan luas, seperti diilustrasikan pada gambar 2.
gaya ρ h ∆A g
p = = = ρ g h (3)
luas ∆A
Di mana p adalah tekanan yang dialami dasar bejana. Dalam satuan tekanan diukur dalam N/m2, dan dinamai Pascal yang disingkat Pa.

Gambar 2. Cairan setinggi h menekan dasar bejana A
Sebagai contoh, misalnya akan kita cari tekanan dalam Pa, yang dialami dasar bejana cairan dengan ρ = 670 kg/m3 dan dalamnya 46 cm.
p = ρ g h = (670 kg/m3) (9,8 m/s2) (0,46 m)
= 3020 kg.m/s2 = 3020 n/m2 = 3020 pa
Tekanan adalah kuantitas skalar tanpa arah. Gaya yang menghasilkan tekanan yang bekerja pada permukaan adalah vektor yang arahnya selalu tegak lurus ke permukaan. Kita dapat menggunakan keadaan setimbang gaya-gaya yang bekerja pada bagian kecil cairan, seperti dilukiskan pada gambar 3.

Gambar 3. Keseimbangan gaya pada bagian kecil cairan.
Bagian kecil cairan yang tebalnya ∆A dan luas permukaan bagian atas (ada bagian bawah) A serta luas sisi lainnya A mengalami keseimbangan gaya. Dalam hal ini cairan tidak mengalami pergolakan yang mengakibatkan cairan mengalir. Tiap bagian dari cairan mestilah diam. Tekanan yang dilakukan bagian cairan lain pada bagian kecil cairan tersebut yang dilakukan oleh gaya-gaya F3 dan F4 saling meniadakan, demikian pula oleh gaya-gaya F5 dan F6. Gaya F2 mestilah cukup besar terhadap F1 agar dapat menopang bagian cairan tersebut.
Karena F3 = F4 dan F5 = F6, maka p3 (=F3/A2) = p4 (=F4/A2) dan p5 (=F5/A2) = p6 (F6/A2)
Sekarang, karena F2 > F1, maka
p2 A1 . p1 A1 = ρ g A1 ∆h
p2 . p1 = ρ g ∆h
atau
∆p = ρ g ∆h (4)
Jadi, apabila kerapatannya konstan, perubahan tekanan di antara dua titik di dalam cairan berbanding lurus dengan perbedaan kedalamannya. Pada kedalaman yang sama mempunyai tekanan yang sama. Selama variasi tekanan di dalam cairan statis hanya tergantung pada kedalamannya, maka penambahan tekanan dari luar yang dilakukan pada permukaan cairan, misalnya karena perubahan tekanan atmosfer atau tekanan piston, mestilah merupakan penambahan tekanan pada semua titik dalam cairan, seperti dikemukakan oleh Blaise Pascal (1623-1662), yang dikenal sebagai Hukum Pascal.
Tekanan yang dilakukan pada cairan dalam ruang tertutup, akan diteruskan kemana-mana sama besarnya termasuk dinding tempatnya.
Apabila kerapatan ρ (massa jenis) sangat kecil, misalnya fluida berbentuk gas, maka perbedaan tekanan pada dua titik di dalam fluida dapat diabaikan. Jadi di dalam suatu bejana yang berisi gas, tekanan gas di mana-mana adalah sama. Hal ini tentu saja bukan untuk ∆h yang sangat besar. Tekanan dari udara sangat bervariasi untuk ketinggian yang besar dalam atmosfer. Dalam kenyataan, kerapatan ρ berbeda pada ketinggian yang tidak sama dan ρ ini hendaklah kita ketahui sebagai fungsi dari h sebelum persamaan 3 di atas kita pergunakan.
Marilah kita perhatikan hal berikut ini. Andaikan ke dalam pipa berbentuk U dimasukkan dua jenis cairan yang tidak dapat bercampur secara sempurna, misalnya air dengan minyak tanah.

Gambar 4. Pipa berbentuk U berisi dua jenis cairan.
Setelah cairan yang kerapatannya ρ1 dimasukkan ke dalam pipa, cairan yang kedua dengan kerapatan ρ2 (di mana ρ1 > ρ2) dimasukkan ke salah satu pipa sehingga permukaan cairan yang pertama turun setinggi 1 di bawah cairan yang kedua itu, sedangkan permukaan lainnya naik setinggi 1 seperti dilukiskan pada gambar 4 di atas. Akan kita tentukan perbandingan kerapatan kedua jenis cairan tersebut. Pada gambar 4 titik C menyatakan keseimbangan tekanan. Tekanan di C yang dilakukan cairan di atasnya adalah
Untuk cairan pertama : p1 g 2 1
Untuk cairan kedua : p1 g 2 1
Sehingga :
ρ1 g 2 1 = ρ2 g (d + 2 1)
atau
ρ2 2 1
=
ρ1 d + 2 1
Perbandingan kerapatan suatu bahan terhadap kerapatan air dinamakan kerapatan relatif atau gravitas spesifik dari bahan tersebut.
Archimedes mendapatkan suatu prinsip sebagai berikut. Apabila suatu benda dicelupkan ke dalam cairan (seluruhnya atau sebagian), benda itu mengalami gaya ke atas sebesar berat cairan yang dipindahkannya.
Apabila sebuah benda dicelupkan ke dalam cairan, seperti ditunjukkan dalam gambar 5, total gaya ke atas atau gaya angkat, dilakukan pada benda. Akibat gaya ini terdapat perbedaan tekanan pada bagian bawah dan bagian atas benda. Selama tekanan ini tergantung pada kedalaman cairan, dengan mudah dapat kita hitung gaya ke atas untuk sederhana, antara lain untuk balok tegar di mana salah satu permukaannya horizontal.

Gambar 5. Gaya-gaya yang dialami benda di dalam cairan.
Benda yang bentuknya sembarang, agak sulit kita menentukan tekanan karena bervariasinya titik-titik permukaan benda. Untuk itu prinsip Archimedes sangat membantu. Andaikan benda dikeluarkan dari dalam cairan akan menggantikan tempat benda sebanyak tempat yang tadinya ditempati oleh benda. Jika volume tempat benda itu telah diisi oleh cairan, ini menunjukkan bahwa adanya keseimbangan gaya yang terjadi antar cairan penyelubung dengan bagian cairan yang menggantikan tempat benda tersebut. Jadi gaya netto yang arahnya ke atas adalah sama dengan m1 g, di mana m1 adalah massa cairan yang mengisi volume yang ditinggalkan oleh benda.
Sekarang kita tinggalkan pengandaian tadi dengan benda sesungguhnya yang massanya mo. Cairan mestilah melakukan kontak dengan setiap titik pada permukaan benda yang memberikan gaya-gaya sama di mana-mana. Gaya ini mestilah sama dengan gaya penopang cairan yang volumenya adalah sama. Gaya ini adalah gaya angkat (ke atas) yang besar.
Fb = mf g = ρ1 Vg (5)
Di mana m1 adalah massa cairan yang dipindahkan oleh benda yang tercelup ke dalam cairan adalah kerapatan cairan. Gaya angkat ini arahnya vertikal ke atas.
Persamaan 5 dinamakan Prinsip Archimedes yang dikemukakan oleh Archimedes pada tahun 250 SM. Jika gaya ke atas lebih kecil daripada berat benda yang dicelupkan, mala benda itu akan tenggelam. Jika berat benda lebih kecil daripada gaya ke atas, benda itu akan terapung. Seandainya ρo adalah kerapatan benda, dengan volume V, maka beratnya
W = mo g = ρo V g
Gaya ke atas dinyatakan oleh persamaan 5.
Fb = ρ1 V g (6)
Netto gaya ke atas ketika benda semuanya tercelup dalam cairan
Fnet = Fb . W =( ρf. ρo) V g (7)
Jadi benda dengan kerapatan lebih besar dari kerapatan cairan akan tenggelam, dan yang lebih kecil akan terapung.

HUKUM KEKEKALAN ENERGI II

Hukum Kekekalan Energi
Sebelumnya kita telah mempelajari perubahan bentuk energi. Pada materi perubahan bentuk energi telah disebutkan bahwa energi tidak hilang atau habis, namun mengalami perubahan menjadi bentuk energi lain. Energi juga tidak dapat dimunculkan tanpa menimbulkan perubahan bentuk energi lainnya. Banyaknya energi yang berubah menjadi bentuk energi lain sama dengan banyaknya energi yang berkurang sehingga total energi dalam sistem tersebut adalah tetap. Dengan demikian, dapat kita simpulkan bahwa energi tidak dapat diciptakan atau dimusnahkan, energi hanya dapat berubah bentuk menjadi bentuk energi lain. Pernyataan ini dikenal sebagai hukum kekekalan energi.

Perubahan Bentuk Energi
Suatu bentuk energi dapat berubah menjadi bentuk energi yang lain. Perubahan bentuk energi yang biasa dimanfaatkan sehari-hari antara lain sebagai berikut:
  • Energi listrik menjadi energi panas. Contoh perubahan energi listrik menjadi energi panas terjadi pada mesin pemanas ruangan, kompor listrik, setrika listrik, heater, selimut listrik, dan solder.
  • Energi mekanik menjadi energi panas. Contoh perubahan energi mekanik menjadi energi panas adalah dua buah benda yang bergesekan. Misalnya, ketika kamu menggosok-gosokkan telapak tanganmu maka kamu akan merasa panas.
  • Energi mekanik menjadi energi bunyi. Perubahan energi mekanik menjadi energi bunyi dapat terjadi ketika kita bertepuk tangan atau ketika kita memukulkan dua buah benda keras.
  • Energi kimia menjadi energi listrik. Perubahan energi pada baterai dan aki merupakan contoh perubahan energi kimia menjadi energi listrik.
  • Energi listrik menjadi energi cahaya dan kalor. Perubahan energi listrik menjadi energi cahaya dan kalor terjadi pada berpijarnya bohlam lampu. Seperti telah disebutkan sebelumnya bahwa energi cahaya biasanya disertai bentuk energi lainnya, misalnya kalor. Coba dekatkan tanganmu ke bohlam lampu yang berpijar! Lama kelamaan tanganmu akan merasa semakin panas.
  • Energi cahaya menjadi energi kimia. Perubahan energi cahaya menjadi energi kimia dapat kita amati pada proses pemotretan hingga terbentuknya foto.

Latihan Yuk!!
  1. Carilah benda-benda disekitarmu dan jelaskan tentang perubahan energi yang terjadi pada benda tersebut!

KECEPATAN DAN KELAJUAN

Pengertian Kecepatan dan Kelajuan
Istilah kecepatan dan kelajuan dikenal dalam perubahan gerak. Kecepatan termasuk besaran vektor, sedangkan kelajuan merupakan besaran skalar. Besaran vektor memperhitungkan arah gerak, sedangkan besaran skalar hanya memiliki besar tanpa memperhitungkan arah gerak benda. Kecepatan merupakan perpindahan yang ditempuh tiap satuan waktu, sedangkan kelajuan didefinisikan sebagai jarak yang ditempuh tiap satuan waktu. Secara matematis dapat ditulis sebagai berikut.

Kecepatan Rata-Rata dan Kelajuan Rata-Rata
Kecepatan rata-rata didefinisikan sebagai perpindahan yang ditempuh terhadap waktu. Jika suatu benda bergerak sepanjang sumbu-x dan posisinya dinyatakan dengan koordinat-x, secara matematis persamaan kecepatan rata-rata dapat ditulis sebagai berikut

Keterangan:
v = kecepatan rata-rata (m/s)
delta x = xakhir – xawal= perpindahan (m)
delta t = perubahan waktu (s)

Kelajuan rata-rata merupakan jarak yang ditempuh tiap satuan waktu. Secara matematis dapat dituliskan sebagai berikut

Keterangan:
v = kecepatan rata-rata (m/s )
s = jarak tempuh (m)
t = waktu tempuh (s)



Latihan Yuk!!
  1. Anton berlari mengelilingi lapangan berukuran 8 m x 6 m sebanyak 2,5 putaran. Selang waktu yang diperlukan 10 sekon. Hitunglah kelajuan dan kecepatan Anton!
  2. Seekor semut bergerak dengan menempuh jarak 60 cm setelah 3 detik. Hitunglah kelajuan semut tersebut!
  3. Seorang pelari menempuh lintasan berbentuk lingkaran yang berjari-jari 14 m sebanyak 2,5 putaran selama 20 detik. Tentukan kelajuan dan kecepatan pelari tersebut.

JENIS2 MIKROSKOP DAN CARA MENGGUNAKANYA

Mikroskop dan Jenis-Jenisnya
Apakah semua makhluk hidup dapat diamati dengan jelas secara langsung, tanpa menggunakan alat bantu? Bagaimana pula makhluk hidup yang bersel satu? Saat kita melakukan pengamatan sel atau jaringan pada makhluk hidup dapatkah kita melihat dengan jelas bagian-bagiannya? Mereka terlalu kecil untuk dapat kita amati langsung dengan mata kita atau disebut dengan mikroskopis. Untuk mengamati hewan atau benda mikroskopis, kita perlu menggunakan alat bantu untuk dapat memperjelas objek pengamatan. Alat bantu tersebut dapat berupa kaca pembesar (lup) maupun mikroskop. Mikroskop (bahasa Yunani: micron = kecil dan scopos = tujuan) adalah sebuah alat untuk melihat objek yang terlalu kecil untuk dilihat dengan mata telanjang.

Tanpa bantuan mikroskop kita tidak dapat mengamati bagianbagian sel/jaringan dengan jelas dan terperinci. Mikroskop dapat membuat objek pengamatan yang kecil terlihat lebih besar. Mikroskop awalnya dibuat tahun 1590 oleh Zaccharias Janssen dan Hans, seorang tukang kacamata dari Belanda. Selanjutnya pada tahun 1610, Galileo, ahli fisika modern dan astronomi menggunakan mikroskop untuk mengamati gejala alam. Beberapa tahun kemudian Antonie van Leuwenhoek dari Belanda membuat mikroskop dengan satu lensa yang dapat membesarkan objek yang diamati sampai 300 kali. Tahun 1663 Robert Hooke, ilmuwan Inggris meneliti serangga dan tumbuhan dengan mikroskop. Ia menemukan sel-sel kecil pada gabus.

Jenis-Jenis Mikroskop
Bentuk dan jenis mikroskop berkembang sejalan dengan perkembangan ilmu pengetahuan dan teknologi. Mikroskop yang paling sederhana adalah mikroskop cahaya, mikroskop stereo sampai yang modern seperti mikroskop elektron. Semakin modern, perbesaran yang dihasilkan semakin besar dan rinci. Berdasarkan pada kenampakan objek yang diamati, mikroskop dibagi dua jenis, yaitu mikroskop dua dimensi (mikroskop cahaya) dan mikroskop tiga dimensi (mikroskop stereo). Berdasarkan sumber cahayanya, mikroskop dibedakan menjadi mikroskop cahaya dan mikroskop elektron.
  • Mikroskop Cahaya
Mikroskop cahaya mempunyai perbesaran maksimum 1000 kali. Mikroskop jenis ini memiliki tiga lensa, yaitu lensa objektif, lensa okuler, dan kondensor. Lensa objektif dan lensa okuler terletak pada kedua ujung tabung mikroskop. Lensa okuler pada mikroskop ada yang berlensa tunggal (monokuler) atau ganda (binokuler). Lensa kondensor berperan untuk menerangi objek dan lensa-lensa mikroskop lain. Dengan pengaturan yang tepat maka akan diperoleh daya pisah maksimal.
  • Mikroskop Stereo
Mikroskop stereo merupakan jenis mikroskop yang hanya bias digunakan untuk benda yang relatif besar dengan perbesaran 7 hingga 30 kali. Benda yang diamati dengan mikroskop ini dapat terlihat secara tiga dimensi. Komponen pada mikroskop stereo hampir sama dengan mikroskop cahaya. Perbedaannya pada ruang ketajaman lensa mikroskop stereo jauh lebih tinggi dibandingkan dengan mikroskop cahaya sehingga kia dapat melihat bentuk tiga dimensi benda yang diamati.
  • Mikroskop Elektron
Mikroskop elektron mempunyai perbesaran sampai 100 ribu kali. Elektron digunakan sebagai pengganti cahaya. Ada dua tipe pada mikroskop elektron, yaitu mikroskop elektroscanning (SEM) dan mikroskop elektron transmisi (TEM).


Bagian-Bagian Mikroskop dan Cara Penggunaannya 
  • Pengenalan Bagian-Bagian Mikroskop
Setelah kamu tahu sejarah singkat dan jenis-jenis mikroskop, marilah kita pelajari bagian-bagian mikroskop. Coba kamu perhatikan gambar mikroskop berikut ini dan amati masing-masing bagiannya!
Gambar tersebut adalah salah satu jenis mikroskop yang sering dipakai di sekolah, yaitu mikroskop cahaya. Coba bandingkan dengan mikroskop yang ada di laboratorium sekolahmu! Sama ataukah berbeda? Bentuk dan jenis mikroskop memang bermacam-macam, tetapi pada intinya hampir sama prinsip kerjanya. Sekarang mari kita pelajari bagian-bagian mikroskop! Bagian bagian mikroskop dapat dikelompokkan menjadi 3 bagian, yaitu bagian optik, penerangan, dan mekanis.

Bagian Optik
Bagian ini berupa lensa-lensa yang mampu membuat bayangan benda menjadi lebih besar. Ada dua macam lensa, lensa yang dekat dengan mata disebut lensa okuler atau lubang pengintai. Kekuatan perbesaran biasanya tertulis pada permukaanya, misalnya 10x dan lain-lain. Lensa yang dekat dengan benda/objek pengamatan disebut lensa objektif dan terpasang pada revolver. Kekuatan perbesaran berbeda-beda misalnya 10x, 20x, maupun 40x. Lensa objektif dapat diatur sesuai dengan pilihan yang kita perlukan dengan cara memutar revolver (tempat lensa objektif). Masih ada satu lagi lensa kondensor yang berfungsi mengumpulkan cahaya atau menerangi objek yang diamati. Perbesaran yang tampak pada pengamatan merupakan hasil kali dari lensa okuler dan lensa objektif yang digunakan. Contohnya, bila kamu menggunakan lensa okuler 10xdan objektif 20xmaka perbesarannya adalah 10x20 atau sama dengan 200x. Ini berarti benda yang diamati melalui mikroskop telah diperbesar 200x.

Bagian Penerangan
Salah satu syarat sediaan (preparat) dapat diamati dengan jelas adalah pencahayaan yang cukup. Untuk menangkap dan memantulkan cahaya yang masuk, mikroskop dilengkapi dengan reflektor berupa cermin. Cermin tersebut memiliki 2 sisi, datar dan cekung. Permukaan yang datar digunakan jika sumber cahaya cukup terang, sedangkan bagian yang cekung digunakan bila cahaya kurang terang. Di bawah meja objek, dapat kita temukan bagian yang berfungsi mengatur banyaknya cahaya yang masuk. Bagian ini disebut diafragma, di dalamnya terdapat lubang-lubang berupa lingkaran yang dapat diputar, ada yang besar maupun kecil. Semakin kecil diafragma yang digunakan semakin kecil pula cahaya yang masuk ke dalam mikroskop, demikian juga sebaliknya.

Bagian Mekanis
Bagian mekanis berguna untuk menggerakkan dan memudahkan penggunaan mikroskop. Bagian tersebut di antaranya landasan/dasar/kaki mikroskop dan pegangan mikroskop. Selain itu, ada bagian yang berguna untuk pengatur fokus, yaitu pemutar kasar (makrometer) dan pemutar halus (mikrometer).
Cara Menggunakan Mikroskop
Letakkan mikroskop pada meja sedemikian rupa agar kamu lebih mudah melakukan pengamatan melalui tabung mikroskop. Pastikan mikroskop terletak pada tempat yang aman, atur pencahayaan dan peralatan yang telah siap dipakai, kemudian lakukan pengaturan pencahayaan. Objek pengamatan (preparat) dapat diamati di mikroskop dengan jelas apabila cahaya yang masuk cukup memadai. Mikroskop ada yang sudah dilengkapi sumber cahaya berupa lampu sehingga untuk mengatur pencahayaan tinggal menghidupkan lampunya saja. Mikroskop yang belum dilengkapi dengan sumber cahaya dapat menggunakan cahaya lampu maupun sinar matahari. Bila menggunakan lampu, arahkan lampu pada jarak kira-kira 20 cm dari mikroskop. Jika sumber cahaya dari sinar matahari, bagian cermin pada mikroskop diarahkan pada datangnya sumber cahaya matahari, misalnya dekat pintu/jendela. 

Aturlah diafragma dan kedudukan cermin hingga cahaya terpantul melalui lubang meja objek. Jangan mengarahkan cermin ke arah sinar matahari secara langsung, karena cahaya yang memantul ke mata dapat mengganggu penglihatan. Pencahayaan sudah tepat dan memadai, bila diamati dari lensa okuler akan tampak lingkaran yang terangnya merata. Inilah yang disebut dengan lapangan pandang. Apabila lapangan pandang sudah tampak namun belum jelas, cobalah putar/ganti lensa objektif dengan cara memutar revolver.

Setelah pengaturan pencahayaan, maka untuk dapat melihat objek (preparat/ sediaan) melalui mikroskop gunakan lensa objektif yang memiliki perbesaran lemah dulu, kemudian lakukan langkah langkah berikut:
  1. Letakkan kaca benda (object glass) beserta objek yang akan diamati (preparat/sediaan) pada meja objek. Aturlah posisi kaca benda sehingga objek yang akan diamati berada pada lapangan pandang.
  2. Jepitlah kaca benda dengan penjepit yang terletak di atas meja objek.
  3. Sambil melihat dari samping, turunkan lensa objektif secara perlahan dengan menggunakan pemutar kasar hingga jarak lensa objektif dan preparat yang diamati kira-kira 5 mm. Pada beberapa mikroskop, yang naik turun bukan lensa objektifnya tetapi meja objek (Hati-hati! Jangan sampai lensa objektif menyentuh/membentur gelas benda. Hal ini dapat menyebabkan lensa objektif tergores).
  4. Perhatikan bayangan melalui lensa okuler. Gunakan pemutar kasar untuk menaikkan atau menurunkan lensa objektif sampai preparat terlihat jelas. Apabila bayangan belum terlihat, ulangi langkah (3).
  5. Setelah preparat terlihat, dengan menggunakan pemutar halus, naik turunkan lensa objektif agar tepat pada fokus lensa (preparat tampak lebih jelas).
  6. Untuk memperoleh perbesaran kuat, kita dapat mengganti/mengubah lensa objektif dengan cara memutar revolver. Usahakan agar posisi preparat tidak bergeser. Bila hal ini terjadi maka kamu harus mengulangi dari awal.

Cara Mengukur melalui Mikroskop
Miroskop digunakan untuk mengamati dan mempelajari objek (preparat/spesimen) yang ukurannya sangat kecil. Ukuran preparat yang kita amati dapat diperkirakan dengan cara membandingkannya dengan ukuran lapangan pandang yang berbentuk lingkaran. Mari kita mengukur menggunakan mikroskop.
  1. Gunakan lensa objektif dengan perbesaran lemah, misalnya 10x. Letakkan penggaris/mistar plastik transparan (tembus pandang) dengan skala milimeter di atas meja objek. Unit pengukuran panjang yang digunakan adalah milimeter atau micron. 1 milimeter setara dengan 1000 mikron.
  2. Aturlah pemutar kasar sehingga mistar terletak pada fokus yang tepat.
  3. Perlahan-lahan geserlah mistar sehingga diperoleh bayangan
  4. Jika ukuran lapangan pandang pada mikroskop seperti pada Gambar, berarti ukuran lapangan pandang pada mikroskop tersebut adalah 12 mm.
  5. Gantilah mistar dengan preparat/sediaan yang diamati. Misalkan preparat/sediaan yang diamati setengah ukuran bidang lapangan pandang, maka ukuran preparatnya adalah ½ x12 mm = 6 mm.
  6. Bagaimana mengetahui ukuran preparat yang diamati? Penggunaan lensa objektif dengan perbesaran lemah, akan sulit untuk memperkirakan ukuran bagian yang lebih kecil. Untuk itu, perlu menggunakan lensa objektif dengan perbesaran kuat, misalnya 40x. Jika ukuran bayangan preparat yang diamati misalkan ¼ ukuran lapangan pandang mikroskop, maka perkiraan ukuran sebenarnya dari benda yang diamati adalah ¼ x10/40 x 6 mm = 0,375 mm (perkiraan).

Perawatan Mikroskop
Mikroskop merupakan peralatan biologi yang perlu dirawat dengan baik. Cara membawa mikroskop dengan baik adalah pegang tangkainya dengan tangan kanan dan letakkan tangan kiri untuk menopangnya. Jangan mengayun, melambungkan, atau menggetarkannya sewaktu meletakkan mikroskop dan jangan mengangkat mikroskop pada tubuh tabungnya, karena akan ada bagian yang lepas atau jatuh apabila hal ini kamu lakukan. Mikroskop yang telah selesai dipakai harus dibersihkan, pakailah penutup plastik atau masukkan pada kotaknya agar terhindar dari debu. Simpan pada tempat yang kering dan usahakan dalam lemari yang dilengkapi dengan lampu untuk mengurangi kelembaban. Lensa yang kotor harus dibersihkan dengan kain lembut, kapas pengisap atau kertas lensa yang telah dibasahi dengan air bersabun, alkohol, atau xilol. Lakukan dengan hati-hati karena lensa mudah tergores, yang dapat mengakibatkan pengamatan menjadi kurang jelas.

PEMUAIAN ZAT

Kereta api merupakan alat transportasi darat yang relatif aman dan nyaman serta dapat mengangkut penumpang dalam jumlah yang banyak. Kereta berjalan di atas rel. Pada sambungan rel kereta api terdapat sebuah celah, Mengapa harus ada celah? Celah tersebut pada malam hari lebar, sedangkan siang hari menjadi sempit karena terkena sinar matahari.

Sebagian besar zat akan memuai bila dipanaskan dan menyusut ketika didinginkan. Bila suatu zat dipanaskan (suhunya dinaikkan) maka molekul-molekulnya akan bergetar lebih cepat dan amplitudo getaran akan bertambah besar, akibatnya jarak antara molekul benda menjadi lebih besar dan terjadilah pemuaian. Pemuaian adalah bertambahnya ukuran benda akibat kenaikan suhu zat tersebut. Pemuaian dapat terjadi pada zat padat, cair, dan gas.

Pemuaian Zat Padat
Coba kamu amati bingkai kaca jendela di ruang kelasmu! Adakah bingkai jendela yang melengkung? Tahukah kamu apa sebabnya? Bingkai jendela tersebut melengkung tidak lain karena mengalami pemuaian. Pemuaian yang terjadi pada benda, sebenarnya terjadi pada seluruh bagian benda tersebut. Namun demikian, untuk mempermudah pemahaman maka pemuaian dibedakan tiga macam, yaitu pemuaian panjang, pemuaian luas, dan pemuaian volume.

1. Pemuaian Panjang
Pernahkah kamu mengamati kabel jaringan listrik pada pagi hari dan siang hari? Kabel jaringan akan tampak kencang pada pagi hari dan tampak kendor pada siang hari. Kabel tersebut mengalami pemuaian panjang akibat terkena panas sinar matahari. Alat yang digunakan untuk menyelidiki pemuaian panjang berbagai jenis zat padat adalah musschenbroek. Pemuaian panjang suatu benda dipengaruhi oleh panjang mula-mula benda, besar kenaikan suhu, dan tergantung dari jenis benda.
Alat Musschenbroek
Besarnya panjang logam setelah dipanaskan adalah sebesar
Besarnya panjang zat padat untuk setiap kenaikan 1ºC pada zat sepanjang 1 m disebut koefisien muai panjang (α). Hubungan antara panjang benda, suhu, dan koefisien muai panjang dinyatakan dengan persamaan
Keterangan:
L = Panjang akhir (m)
L0 = Panjang mula-mula (m)
ΔL = Pertambahan panjang (m)
α = Koefisien muai panjang (/ºC)
Δt = kenaikan suhu (ºC)

Beberapa Koefisien Muai Panjang Benda

2. Pemuaian Luas
Jika yang dipanaskan adalah suatu lempeng atau plat tipis maka plat tersebut akan mengalami pemuaian pada panjang dan lebarnya. Dengan demikian lempeng akan mengalami pemuaian luas atau pemuaian bidang. Pertambahan luas zat padat untuk setiap kenaikan 1ºC pada zat seluas 1 m^2 disebut koefisien muai luas (β). Hubungan antara luas benda, pertambahan luas suhu, dan koefisien muai luas suatu zat adalah
Keterangan:
A = Luas akhir (m2)
Δ0 = Pertambahan luas (m2)
A0 = Luas mula-mula (m2)
β = Koefisien muai luas zat (/º C)
Δt = Kenaikan suhu (ºC)

Besarnya β dapat dinyatakan dalam persamaan berikut.

3. Pemuaian Volume
Jika suatu balok mula-mula memiliki panjang P0, lebar L0, dan tinggi h0 dipanaskan hingga suhunya bertambah Δt, maka berdasarkan pada pemikiran muai panjang dan luas diperoleh harga volume balok tersebut sebesar
dimana

Keterangan:
V = Volume akhir (m^3)
V0 = Volume mula-mula (m^3)
ΔV = Pertambahan volume (m^3)
γ = Koefisien muai volume (/ºC)
Δt = Kenaikan suhu (ºC)


Pemuaian Zat Cair
Pada zat cair tidak melibatkan muai panjang ataupun muai luas, tetapi hanya dikenal muai ruang atau muai volume saja. Semakin tinggi suhu yang diberikan pada zat cair itu maka semakin besar muai volumenya. Pemuaian zat cair untuk masing-masing jenis zat cair berbeda-beda, akibatnya walaupun mula-mula volume zat cair sama tetapi setelah dipanaskan volumenya menjadi berbeda-beda. Pemuaian volume zat cair terkait dengan pemuaian tekanan karena peningkatan suhu. Titik pertemuan antara wujud cair, padat dan gas disebut titik tripel.
Anomali Air
Khusus untuk air, pada kenaikan suhu dari 0º C sampai 4º C volumenya tidak bertambah, akan tetapi justru menyusut. Pengecualian ini disebut dengan anomali air. Oleh karena itu, pada suhu 4ºC air mempunyai volume terendah. Hubungan volume dengan suhu pada air dapat digambarkan pada grafik berikut.
Pada suhu 4ºC, air menempati posisi terkecil sehingga pada suhu itu air memiliki massa jenis terbesar. Jadi air bila suhunya dinaikkan dari 0ºC – 4ºC akan menyusut, dan bila suhunya dinaikkan dari 4ºC ke atas akan memuai. Biasanya pada setiap benda bila suhunya bertambah pasti mengalami pemuaian. Peristiwa yang terjadi pada air itu disebut anomali air. Hal yang sama juga terjadi pada bismuth dengan suhu yang berbeda. Lakukan kegiatan berikut untuk menyelidiki kecepatan pemuaian pada berbagai macam zat cair.


Pemuaian pada Gas
Mungkin kamu pernah menyaksikan mobil atau motor yang sedang melaju di jalan tiba-tiba bannya meletus?. Ban mobil tersebut meletus karena terjadi pemuaian udara atau gas di dalam ban. Pemuaian tersebut terjadi karena adanya kenaikan suhu udara di ban mobil akibat gesekan roda dengan aspal.

Pemuaian pada gas adalah pemuaian volume yang dirumuskan sebagai
γ adalah koefisien muai volume. Nilai γ sama untuk semua gas, yaitu 1/273 ºC^-1

Pemuaian gas dibedakan tiga macam, yaitu:
a. pemuaian gas pada suhu tetap (isotermal),
b. pemuaian gas pada tekanan tetap (isobar), dan
c. pemuaian gas pada volume tetap (isokhorik).

1. Pemuaian Gas pada Suhu Tetap (Isotermal)
Pernahkah kalian memompa ban dengan pompa manual. Apa yang kalian rasakan ketika baru pertama kali menekan pompa tersebut? Apa yang kalian rasakan ketika kalian menekannya lebih jauh? Awalnya mungkin terasa ringan. Namun, lama kelamaan menjadi berat. Hal ini karena ketika kita menekan pompa, itu berarti volume gas tersebut mengecil. Pemuaian gas pada suhu tetap berlaku hukum Boyle, yaitu gas di dalam ruang tertutup yang suhunya dijaga tetap, maka hasil kali tekanan dan volume gas adalah tetap. Dirumuskan sebagai:
Keterangan:
P = tekanan gas (atm)
V = volume gas (L)

2. Pemuaian Gas pada Tekanan Tetap (Isobar)
Pemuaian gas pada tekanan tetap berlaku hukum Gay Lussac, yaitu gas di dalam ruang tertutup dengan tekanan dijaga tetap, maka volume gas sebanding dengan suhu mutlak gas. Dalam bentuk persamaan dapat dituliskan sebagai:
Keterangan:
V = volume (L)
T = suhu (K)

3. Pemuaian Gas Pada Volume Tetap (Isokhorik)
Pemuaian gas pada volume tetap berlaku hukum Boyle-Gay Lussac, yaitu jika volume gas di dalam ruang tertutup dijaga tetap, maka tekanan gas sebanding dengan suhu mutlaknya. Hukum Boyle-Gay Lussac dirumuskan sebagai
Dengan menggabungkan hukum boyle dan hukum Gay Lussac diperoleh persamaan
Keterangan:
P = tekanan (atm)
V = volume (L)
T = suhu (K)



Latihan Yuk!!
  1. Batang logam panjangnya 300 cm dipanaskan dari 25ºC hingga 225ºC mengalami pertambahan panjang sebesar 0,6 cm. Berapa pertambahan batang logam yang sama dengan panjang 200 cm dan dipanaskan dari 20ºC hingga suhu 320ºC
  2. Sekeping aluminium panjangnya 40 cm dan lebarnya 30 cm dipanaskan dari 40ºC sampai 140ºC. Jika koefisien muai panjang aluminium adalah 2,5 x 10^-5 /º C, berapakah luas keping aluminium setelah dipanaskan?
  3. Besi berbentuk kubus pada suhu 20ºC memiliki panjang rusuk 10 cm. Kubus tersebut dipanaskan hingga suhu 220ºC. Berapa volume kubus pada suhu 220ºC jika koefisien muai panjang besi 1,2 x 10^5/ºC?
  4. Jelaskan pengertian anomali air!
  5. Apa yang dimaksud dengan titik tripel dan titik kritis?
  6. Sebutkan tiga contoh pemanfaatan prinsip pemuaian zat cair dalam kehidupan sehari-hari!
  7. Suatu gas suhunya 27ºC dipanaskan pada tekanan tetap. Berapa suhu gas tersebut saat volume gas menjadi 3 kali volume semula?
  8. Gas di dalam ruang tertutup pada suhu 27ºC dan tekanan 2 atm memiliki volume 2,4 L. Berapa volume gas tersebut pada suhu 227ºC dan tekanan 3 atm?
  9. Sejumlah gas dengan volume 4 L pada tekanan 1,5 atm dan suhunya 27ºC. Kemudian gas tersebut dipanaskan hingga suhunya 47ºC dan volumenya 3,2 L. Berapakah tekanan gas setelah dipanaskan?

Cari Blog Ini

Pengikut